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POD INVESTIGATION INTO THE DYNAMICS OF THE TURBULENT JET
AFOSR GRANT F49620-98-1-0143

Wiiliam K. George and Stephan Gamard
Turbulence Research Laboratory
Department of Thermo and Fluid Dynamics
Chalmers University of Technology
Gothenburg. SE-41 296, SWEDEN

Abstract

The objective of this investigation was to study the dynamics of the jet mixing layver
uslng a unique experimental apparatus in conjunction with Proper Orthogonal De-
composition (POD) techniques. The experiments utilize 138 hot-wires in the mixing.
laver of an axisvmmetric jet to simultaneously resolve the instantaneous streamwise
veloeity field at all locations. The POD 1s then applied to a double Fourier transform
i tune and azimuthal direction of the two-point velocity correlation tensor.

Measurements covered all the potential core region of the jet from 2 to 6 diameters
downstream at various high Reynolds numbers. 78.400 to 156.800. and the far field
region from 21 to 69 diameters downstream. at Revnolds numbers from 40.000 to
~4.700. The results both illustiate the limitations of the previous work. and point
the wav for a significant breakthrough in our understanding of free shear flows.

Background

I an earlier version of this experiment that motivated the present work, Citriniti
and George 2} obtained the dynamies of the flow from instantaneous realizations of
the streamwise velocity field at r/D = 3 using 138 simultaneously-sampled hot-wire
anemometer probes. Thev showed that only a few azimuthal Fourier modes and a
simgle rachal POD mode are necessary to represent the evolution of the eigenspectra of
the turbulent field. Furthermore. the velocity reconstructions using the POD provided
evidence for both azimuthally coherent structures that exist near the potential core.
and for counter-rotating. streamwise vortex pairs (or ribs) in the region between
successive azimuthally coherent structures. as well as coexisting for short periods
with them.

The goals of this work were to extend the same methodology to different downstream
positions and different Revnolds numbers. and to establish whether and how the jet
structure could be changed by forcing.



Figure 1: The 138 Hot-wire probe array

Progress in the Past Year

Data using, the 138 hot-wire array (shown in figure 1) and the new data acquisition
svstem have been taken over a wide range of Reynolds numbers and downstream
positions. The mixing layer was investigated from 2 to 6 diameters downstream. with
spacings of 0.5r/D. and Reynolds numbers of 78.400. 117.600. and 156.800. We
also investigated the far field region of the jet with 2 different jet diameters, taking

6 downstream positions from 21 to 69 diameters. and achieving Reynolds numbers
from -40.000 to 84.700.

The mixing layer region (r/D < 6)

The lowest azimuthal mode for all POD modes. which dominated the dynamics at
o) = 3 the previous experiments. dies off rapidly downstream. This is consistent
with earlier studies of coherent structures which showed the evolution of more complex
structures with mereasing downstream distance. This trend toward homogeneity in
the downstream evolution suggests that some residual value may control the growth
rate of the far jet. On the other hand. for the higher azimuthal modes, the peak
shifts to lower mode numbers and actually increases with downstream distance (see
figure 23, These mixing laver data. normalized by shear layer similarity variables,
N ut - r/DYy vs. m - r/D as presented on figure 3. collapse at all downstream
positions and are nearly independent of Reynolds numbers. This is in contrast to the
suggestion by 4] who expected that more complicated modal structures might evolve
with increasing Revnolds number. but confirms the Reynolds number independence of
the large scale structures for these high Revnolds numbers - experiments as presumed
by Glauser 3] and Citriniti and George [2].

The instantaneous fluctuating velocity field at each cross-section was reconstructed
using the eigenfunctions and coefficients obtained from the projection onto the orig-
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Figure 2: The first POD-mode A (m. f). distribution with azimuthal mode number.
m. and frequency. f. for Rep = 156.800. at different downstream positions: (a)
x D=2 .(b)3. (¢) 4. (d) 5

wmal mstantancous velocity measured by all of the probes. Near the jet exit, highly
organized and near-periodic evolutions of the large-scale structures are observed. The
voleano-like eruptions identified by (2], dominate the dynamics and the interactions of
the structures until about r/D = 4. After that. a “propeller-like” structure wppears
and dominates the pattern. For this experiment at least. these two and thre.-bladed
“propeller-like” structures appear to rotate in a single direction. The direction of this
1otation corresponds to the direction of a slight (1:1000) rotation at the exit plane of
thie jet. but the rate of rotation of the “propeller” is orders of magnitude faster.

The far field region (r/D > 20)

The first eigenspectrum. which contains more than 60% of the kinetic energy, was
nearlv independent of downstream position in the experiment considered. It was also
identical to those obtained at the verv end of the mixing layer region, and as well to
those recently taken in the far wake of an axisymmetric disk. It presents two peaks:
one at azimuthal mode-2 at near zero frequency. and the other one at mode-1 for a
Strouhal number of around 1 {defined as St=fr/U.. with x being the downstream
position. and U, the centerline velocity). The plots in figures 4 show these features
clearlv. since contour figures are presented alongside the 3D plots.
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Figure 3: The first POD-mode energy distribution for the near jet normalized in shear
laver variables. (m - r/D). at Rep = 78.400. 117.600, and 156. 800.

Conclusions and future work

A surpnising feature of the present experiment was that the normalized eigenspectra
did not depend on downstream distance after the end of the potential core region.
This provides an important clue as to why and how equilibrium similarity governs
the far jet. and also why the jet growth rate may reflect the upstream conditions.

The results presented here can be compared to analytical results of [1]. and [5]. all
of whom predict an evolution from azimuthal mode-0 to mode-1 for a top-hat exit
profile. We find a predominance of mode-2. suggesting that a linear stability anal-
vsis can be extended to a non-parallel free shear flow to predict this dominance of
mode-2. This would certainly explain the similarity between the profiles taken at dif-
terent downstream positions. and ones recently taken in the wake of an axisymmetric
cvhinder.

The last part of the investigation is the study of how an acoustic forcing could actually
control and affect the jet mixing laver. The apparatus is currently being used. It
seems. however, that the jet favors a propagation of mode-1. and/or mode-2 in the
far field region. so it seems likely that the effect of any other kind of forcing will be
dampened by the end of the mixing laver region.
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Figure 4. Eigenspectra for the far jet as functions of azimuthal mode number (m)
and Strouhal number (fx/U.) at different positions: (a) x/D=21 (Uo =50 m/s).and
(h) 46. () 54, (d) 69. (last 3 at Uo=70 m/s)

Personrn:el

During the past vear. the principal investigator of this research, William K. George,
has moved to Chalmers University of Technology in Gothenburg. Sweden. He brought
most of his experimental facilities, and several staff members. Stephan Gamard is a
Ph.D. student who devoted all his time on this investigation since the beginning at
Butfalo. In addition. thev have been joined by Peter Johansson. a Ph.D. student at
Chalmers. as part of a collaborative effort comparing axisymmetric jets and wakes.
Scott Woodward. staff engineer and a principal in all of UB’s POD investigations, is
offering his assistance at Chalmers in the experimental aspects. Finally, Daehan Jung
recently completed his Ph.D. on the mixing layer region of the jet, and has returned
to the Korean Air Force Academy.
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